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Abstract—Many computationally efficient solutions for online
system identification, including the recently-proposed incremen-
tal maximum likelihood (IML) algorithm, tune their learning
rates based on online estimates of the misalignment error,
defined as the ℓ2-norm of the difference between the true system
parameters vector w∗ ∈ RL and its current estimate wt ∈ RL.
One classic approach for estimating the misalignment error
is the so-called “delay and extrapolate” algorithm proposed
in 1982 by Yamamoto et al. as a heuristic method. In this
paper, we rigorously analyze the accuracy and effectiveness of
this approach when applied to the least mean squares (LMS)
algorithm. For general stationary memoryless sources and for
stationary Gaussian sources with memory, we show that under
mild conditions, the delay and extrapolate method can provably
provide an accurate estimate of the misalignment error. We
support and illustrate our theoretical analysis through simulation.

I. INTRODUCTION

Online estimation of a linear systems’s impulse response,
also known as adaptive filtering, is a well-studied decades-
old problem with a wide range of applications in digital
signal processing and machine learning. A key application of
such algorithms is in two-way audio communication systems.
(Refer to Fig. 1.) In such systems, audio echo cancellation
(AEC) algorithms are employed to cancel the undesired echo
signal generated by the loud-speakers and received by the
microphones. Well known AEC algorithms include least mean
squares (LMS) [1], normalized LMS (NLMS), proportionate
NLMS (PNLMS) [2], affine projection algorithm (APA) [3]
and recursive least squares (RLS) [4]. In addition, recent
advances in computer vision and natural language processing
have motivated researchers to explore the application of deep
learning in this domain as well. This has led to solutions such
as fusion of RNN and NLMS [5], CNN for AEC [6] and
attention-based neural network for AEC [7].

While classic algorithms, such as NLMS and APA, are ver-
satile and computationally-efficient, they do not fully address
the requirements of modern high-definition multi-channel au-
dio systems, such as very high accuracy, fast convergencebib
(or low delay), and robustness. On the other hand, the RLS
algorithm has both fast convergence and high accuracy and
the deep learning based algorithms can handle the cases where
the system contains non-linear components. However, the high
computational complexity and memory requirements of both
RLS and deep learning based methods make them impractical
in most applications. These shortcomings has generated a
new wave of interest in developing efficient high-performance
online learning algorithms.

Fig. 1. AEC system model

When used with fixed parameters, such as fixed learning
rate, classical adaptive filtering algorithms show a trade-off
between convergence speed and accuracy. A key approach to
address this issue and design fast-converging algorithms that
are also accurate is to adaptively tune parameters such as the
learning rate. Examples include variable step size NLMS [8]–
[12], variable step size APA [13], [14], and, recently, IML and
OBML [15], the last of which has optimal convergence proper-
ties for some input distributions. In many of these algorithms,
the optimal choice of the learning rate is a function of the time-
dependent misalignment error, which is the distance between
the true unknown parameters vector w∗ ∈ RL and its estimate
at time t, wt. Since this error is unknown, to be practically
useful these algorithms must be coupled with algorithms for
estimating the misalignment error. One potential misalignment
estimation approach is the “delay and extrapolate” algorithm,
introduced in [16] in 1980s. In this approach, additional (non-
causal) delay is added artificially to the control loop so that
ideal filter coefficients associated with the delay are known
to be zero. The error in estmating these known coefficients
can be calcualted and then extrapolated to an estimate of the
overall error on all filter coefficients.

The intuition behind the delay and extrapolate method
is that "adaptive algorithms spread the filter misalignment
evenly over all coefficients " [17]. However, the assumption
that the error is uniformly spread across the coefficients is
a heuristic assumption based on empirical observations and
is not theoretically verified. The goal of this paper is to
provide a solid theoretical foundation for the use of the
delay-and-extrapolate method by analyzing the validity of this
assumption under different source signal distributions. We
focus on the LMS algorithm and theoretically characterize the
steady-state behavior of the squared error matrix Ut ∈ RL×L



defined as Ut = E[(wt −w∗)(wt −w∗)T ]. Prior work [18],
[19] provides an approximate analysis of Ut. In our work, we
derive exact expressions for Ut, both for general memoryless
sources and Gaussian sources with memory.

The organization of the paper is as follows. Section II
reviews the system model and also the basics of the delay and
extrapolate algorithm. Section III presents our main theoretical
results on the squared error matrix Ut, for two different types
of source. Section IV explores the implications of the results
of Section III for the delay and extrapolate algorithm. Section
V presents our simulation results. Section VI concludes the
paper. The proofs of the theoretical results are presented in
the appendices.

II. BACKGROUND

A. System model and the LMS algorithm

Consider a linear system described as follows. Let xt ∈ RL

and yt denote the input and output of our system at time t,
respectively. We assume that our linear time-invariant system’s
response is described by w∗ ∈ RL, such that

yt = xT
t w

∗ + zt, (1)

where where zt denotes the additive noise in the system,
which is typically modeled as independently and identically
distributed (i.i.d.) as N (0, σ2

z), and independent of xt.
We consider two models for the input:
• sequence model: xt is a window of the most recent

samples
xt = [xt, . . . , xt−L+1]

T .

of a zero-mean, wide-sense stationary process xt with
E[xtxt+τ ] = r(τ).

• block model: the xt are i.i.d with mean zero and covari-
ance R ∈ RL×L

In the sequence model, the covariance matrix satisfies Rij =
r(i − j), and (1) represents the convolution of the input
sequence with finite impulse response w∗. In the context
of AEC (Fig. 1), xt and yt denote the loudspeaker and
microphone signals at time t, and w∗ is the echo impulse
response.

While the sequence model aligns best with many appli-
cations, the block model is more amenable to analysis. Our
theoretical results will be for the block model, although we
empirically have observed that the predictions of the block
model carry over well to the sequence model.

In online system identification (or learning), our goal is to
adaptively estimate the unknown parameters w∗ as the training
samples (xt, yt) arrive. To achieve this goal, we start from an
initial estimate w0, and at every time step t + 1, we update
our current estimate wt to wt+1 as a function of wt and our
past few observations {(xt′ , yt′)}tt′=t−P+1, where P is a small
integer. A classic approach in this domain is the least mean
squares (LMS) algorithm which works as follows

wt+1 = wt + µ
(
yt − xT

t wt

)
xt, (2)

µ ∈ R+ denotes the learning rate. Note that the LMS algo-
rithm is closely connected to the stochastic gradient descent
(SGD) method.

The misalignment error is defined as

et = wt −w∗ (3)

The resulting prediction error at the filter output is denoted

ξt = E
[(
yt − xT

t wt

)2]
= E

[(
zt − xT

t et
)2]

(4)

The misadjustment is a measure of the impact of imperfect
filter coefficients on prediciton error, relative to the optimal
error achieved with et = 0, namely ξmin = E[z2t ] = σ2

z . The
misadjustment is defined as

Mt =
ξt − ξmin

ξmin
. (5)

The ultimate goal of the adaptive filtering is to drive misad-
justment toward zero.

B. Delay-and-extrapolate estimator

As mentioned previously, numerous algorithms have been
proposed that control the learning rate and other parameters
dynamically to optimize tradeoffs between convergence speed
and accuracy. Many such methods ideally require knowledge
of instantaneous misalignment error defined as ∥wt −w∗∥2.
While it is not practical to compute ∥wt −w∗∥2 directly, one
approach to estimate the misalignment in practice is the delay-
and-extrapolate technique. We define an extended input vector
x̃t = [xt,1 xt,2] of length L̃ = L1 + L2. Here xt,2 = xt is
the input vector previously defined, and xt,1 is a non-causal
extension, given by the future L1 samples

xt,1 = [xt+L1
, . . . , xt+1]

T .

in the sequence model, and by the last L1 samples of the
future block xt+1 in the block model. "Future" inputs are
made available in practice by delaying the output yt for at
least L1 samples before processing the data at time t. Using
these definitions, (1) can be expressed yt = x̃T

t w̃
∗+ zt where

w̃∗ = [0L1 w
∗]. Defining extensions w̃t and ẽt, we see that

et,1 = wt,1 − 0 = wt,1 is known, and et,2 = et is unknown.
Assuming that these two parts of the error vector have the
same average energy, we can estimate the misalignment by
extrapolation as

∥wt −w∗∥2 = ∥et,2∥2 ≈ L2

L1
∥et,1∥2 =

L2

L1
∥wt,1∥2. (6)

This heuristic estimate is based on the empirical observation
that the components of the error vector ẽt tend to have homo-
geneous variance. To quantify the accuracy of this estimate,
we first need to analyze the second-order statistics of the error
vector.

III. MEAN SQUARED ERROR ANALYSIS OF FILTER
COEFFICIENTS

In this section we focus on the error vector et and charac-
terize the convergence behaviour of its second order statistics.



Our analysis applies equally to the original model (1) or its
non-causal extension; for simplicity, in this section we write
L, et and so on instead of L̃, ẽt. We focus on the LMS
algorithm with a fixed learning rate µ > 0 and throughout this
section assume that the input vectors xt are from the block
model. The analysis makes small corrections to similar, well-
known results in the LMS literature (see e.g. [18]). As these
differences are not central to our purpose here, discussion is
postponed to Appendix E.

Subtracting w∗ from both sides of (2), and using (1) and
(3) we have

et+1 =
(
I − µxtx

T
t

)
et + µxtzt. (7)

Then et, being a function of {xs} and {zs} for s < t, is
independent of xt and zt. Taking the expected value of both
sides of (7), the expected error satisfies

E[et+1] = (I − µR) E[et] = (I − µR)t+1 E[e0]. (8)

Therefore, if ∥I − µR∥2 < 1, then E[et] → 0, as t → ∞.
Convergence in mean is achieved for 0 < µ < 2/λmax, where
λmax is the largest eigenvalue of R.

To understand the properties of the delay-and-extrapolate
method, we also need to understand the mean-square behavior
of the filter error, that is, the matrix Ut ∈ RL×L defined as

Ut ≜ E[ete
T
t ].

Analyzing Ut also gives insight into prediction error and
misalignment, as due to our independence assumptions to-
gether with (4) and (5) we have

ξt = σ2
z + E

[(
xT
t et

)2]
= σ2

z +Tr(RUt) (9)

and

Mt =
Tr(RUt)

σ2
z

. (10)

Our first result characterizes the dynamics Ut, and its
asymptotic behavior as t grows without bound, for non-
Gaussian xt with uncorrelated components.

Theorem 1. Assume that the entries of xt are i.i.d. zero mean
such that i) E[xtx

T
t ] = σ2

xIL and ii) var(x2
t,i) = cσ4

x < ∞,
for all i = 1, . . . , L. Then,

Ut+1 =
(
1− 2µσ2

x + 2µ2σ4
x

)
Ut

+ µ2σ4
x

(
(c− 2) diag(Ut) +

(
Tr (Ut) +

σ2
z

σ2
x

)
IL

)
(11)

and moreover, if 0 < µ < 2/((L + c)σ2
x) then Ut converges

to the finite limit

U∞ := lim
t→∞

Ut =

(
µσ2

z

2− (L+ c)µσ2
x

)
IL. (12)

The proof of Theorem 1 is presented in Appendix A. From
our perspective, the main significance of this result is that
it shows that the diagonal entries of U∞ are all identical,
supporting the accuracy of the estimator (6). In the case of xt

is Gaussian input, we have var(x2
t,i) = 2σ4

x, and hence c = 2.
Binary input gives c = 0, while heavier tailed distributions
can give c > 2. Applying Theorem 1 to (10), we obtain a
characterization of the dynamics of the misadjustment.

Corollary 1. Under the same conditions as Theorem 1,

Mt+1 = (1− 2µσ2
x + µ2σ4

x(L+ c))Mt + µ2σ4
xL. (13)

and

M∞ = lim
t→∞

Mt =

(
µσ2

xL

2− (L+ c)µσ2
x

)
. (14)

Comparing (13) and (14) shows a trade-off between con-
vergence speed and stationary error. Fastest convergence is
achieved with µ−1 = (L+ c)σ2

x but yields M∞ = L/(L+ c).
Smaller learning rates have slower convergence but smaller
asymptotic error; methods such as IML [15] use estimates of
misalignment to adapt the learning rate over time to optimize
this tradeoff.

Next we extend Theorem 1 to the case where the input
vectors are i.i.d. zero-mean Gaussian vectors with a general
covariance matrix R. To set the stage, for a square matrix R
and scalars µ and c, define the function

ϕc(µ,R) = Tr
(
µR(2I − cµR)

−1
)

(15)

wherever the matrix inverse exists.

Theorem 2. Assume that the vectors xt ∼ N (0,R) are i.i.d.
Gaussian with R ∈ SL++. Then

Ut+1 =Ut − µRUt − µUtR

+ µ2
[
σ2
zR+ 2RUtR+Tr(RUt)R

]
. (16)

Let µ∗ be the smallest positive solution to ϕ2(µ
∗,R) = 1. For

0 < µ < µ∗, Ut converges to the finite limit

U∞ = lim
t→∞

Ut =
µσ2

z

1− ϕ2(µ,R)
(2IL − 2µR)

−1 (17)

In contrast to Theorem 1, Theorem 2 shows that the diagonal
entries of U∞ are not exactly identical when xt has an
arbitrary covariance matrix. However, if the diagonal values
of R are equal, the diagonal entries of U∞ are approximately
equal when the learning rate µ is sufficiently small, since in
that case (2IL − 2µR)−1 ≈ 1

2 (IL + µR). The implications
for delay-and-extrapolate estimation are considered further in
the next section.

Applying Theorem 2 to (10), we obtain a bound on the
dynamics of the misadjustment error, and its asymptotic limit.
Let λmax and λmin , where λmax ≥ λmin > 0, denote the
largest and smallest eigenvalues of R ∈ SL++, respectively.

Corollary 2. Under the same conditions as Theorem 2,

Mt+1 ≤
(
1− 2µλmin + µ2

(
2λ2

max +Tr(R2)
))
Mt

+ µ2 Tr(R2) (18)

≤
(
1− 2µλmin + µ2λ2

max(L+ 2)
)
Mt + µ2Lλ2

max



and

M∞ = lim
t→∞

Mt =
ϕ2(µ,R)

1− ϕ2(µ,R)
(19)

Proofs of Theorem 2 and Corollary 2 are presented in
Appendices B and C, respectively. We again observe a trade-
off between stationary estimation error and convergence rate.
While the bound (18) is not tight in general, the limit (19) is
exact. As suggested by the bound, convergence speed is slow
when λmin ≪ λmax.

To get further insights into the function ϕc(µ,R) and the
critical learning rate µ∗, let λ1 ≥ . . . ≥ λL > 0 denote the
eigenvalues of R. Then, ϕc(µ,R) can be expressed as

ϕc(µ,R) = µTr(R(2I − µcR)−1) =
∑
i

µλi

2− µcλi
. (20)

Thus ϕc(µ,R)/µ → Tr(R)/2, as µ → 0. Since

µλi

2
≤ µλi

2− µcλi
≤ µλi

2− µcTr(R)
(21)

it follows that
µTr(R)

2
≤ ϕc(µ,R) ≤ µTr(R)

2− µcTr(R)
. (22)

As µ∗ is the smallest positive number with ϕc(µ
∗,R) = 1.

we have
2

(c+ 1)Tr(R)
≤ µ∗ ≤ 2

Tr(R)
(23)

The critical learning rate µ∗ can thus be easily bounded
based on Tr(R), which is simply Tr(R) = Lσ2

x when xt

comes from a stationary process.
For small enough µ, U∞ can be approximated as

U∞ ≈ µσ2
z

2− µTr(R)
(I + µR). (24)

As a crosscheck, for the uncorrelated case with R = σ2
xI

and ϕ2(µ,R) = Lµσ2
x/(2 − 2µσ2

x), we observe that (17) is
consistent with (12) of Theorem 1. In this case λmax = λmin

and

µ∗ =
2

(L+ 2)σ2
x

. (25)

IV. ACCURACY OF DELAY AND EXTRAPOLATE

In this section, we use our results from the previous part
to characterize the accuracy of the delay and extrapolate
estimator (6).

Define ∆ = limt→∞ ∆t = limt→∞ ∥et,2∥22 and its estimate
∆̂ = limt→∞ ∆̂t = limt→∞

L2

L1
∥et,1∥22. For uncorrelated

inputs, Theorem 1 shows that the diagonal entries of U∞ are
all equal, which implies that the expected values of ∆ and ∆̂
are equal (E[∆̂] = E[∆]). For Gaussian sources on the other
hand, Theorem 2 shows that, if µ is small enough and the
covariance matrix R has a constant diagonal (which holds for
instance for all stationary sources), then E[∆̂] ≈ E[∆].

We are also interested in the variability of the estimate.
Define the relative estimation error as

υ =
∆̂−∆

∆
=

1
L1

∥et,1∥2
1
L2

∥et,2∥2
− 1. (26)

When µ is small enough to achieve small misadjustment,
the error vector et for large t can be thought of as the sum of
many small, independent increments (see (3)). Thus if xt is not
heavy-tailed, we can expect et for large t to be approximately
Gaussian. In the case of uncorrelated inputs, Theorem 1
shows that ẽt would then be approximately distributed as
N
(
0, ν2IL̃

)
with some variance ν2. In this case, et,1 and

et,2, asymptotically, converge to independent Gaussian random
vectors with i.i.d. Gaussian entries, and ∆ and ∆̂ converge to
two independent chi-square random variables with L2 and L1

degrees of freedom, respectively. The ratio of two independent
chi-square random variables is known to have a F distribution
[20]. More precisely, if U ∼ χ2

n1
and V ∼ χ2

n2
, where U and

V are independent, then X =
1
n1

U
1
n2

V
follows an F distribution

Fn1,n2
, with

E[X] =
n2

n2 − 2
,

and
Var(X) =

2n2
2(n1 + n2 − 2)

n1(n2 − 2)
2
(n2 − 4)

Thus

E[υ] =
L2

L2 − 2
− 1 =

2

L2 − 2
(27)

and

Var(υ) =
2L2

2

(L2 − 2)2(L2 − 4)
(1 +

L2 − 2

L1
). (28)

For large filter length L2 ≫ L1, the variance of υ is
approximately equal to 2/L1. In general, increasing L1 lowers
the variance, at the cost of added delay in the system, and
(28) can be used to choose the smallest delay consistent with
a target estimation accuracy.

For general Gaussian sources, Theorem 2 shows that Ut

converges to U∞ which is no longer proportional to identity
in general, and therefore ∆ and ∆̂ are no longer independent
and no longer chi-square random variables. However, for
small µ, U∞ ∼ (I − µR)−1 ≈ I + µR is approximately
proportional to identity if R is Toeplitz, and e∞,1 and e∞,2

are approximately uncorrelated, so that (27) and (28) should
still hold approximately.

Moreover, when R is Toeplitz, as occurs in the sequen-
tial model, then R is also centrosymmetric, meaning that
Rn,m = RL+1−n,L+1−m, then U∞ is also centrosymmetric
by the closure of this property under matrix inversion. The
delay and extrapolate estimate is then accurate on expectation,
by symmetry, in the special case of L1 = L2.

V. SIMULATION RESULTS

In this section, we conduct numerical simulations to verify
and illustrate properties of the delay-and-extrapolate estimator.



A. Estimator variance in steady state

We first performed numerical experiments to confirm and
illustrate the effect of the delay parameter L1 in controlling
the variance of the misalignment estimator in steady state. We
fixed L2 = 20, so that (28) predicts Var(υ) = 25

162 (1 + 18
L1

).
This predicted variance is plotted in Fig. 2 as a function
of L1, together with empirical estimates of this variance
obtained by simulation with uncorrelated and correlated in-
puts. For uncorrelated signals, we ran 5000 trials, running
the LMS algorithm for 20,000 iterations in each trial, using
µ = 2

3TrR = 2
3(L1+L2)

for 20,000 iterations of the LMS
algorithm. In the correlated case, we reduced the learning rate
to µ = 1

6(L1+L2)
and to ensure convergence, increased the

number of LMS iterations to 250,000. After convergence, we
calculate the empirical variance of relative error over all trials
when L1 is in the interval [10, 30]. As expected, the analysis
and simulation results agree very well for the uncorrelated
case, and approximately in the correlated case, demonstrating
the usefulness of (28) in designing the system delay L1.

10 12 14 16 18 20 22 24 26 28 30

Delay L
1

0.2

0.25

0.3

0.35

0.4

0.45

V
a

ri
a

n
c
e

 o
f 

Uncorrelated: numerical

Uncorrelated: Theory

Correlated: numerical

Fig. 2. Numerical and theoretical variance of relative error with smaller µ
for correlated source

B. Convergence time

The previous section demonstrates the accuracy of the
delay-and-extrapolate estimator after convergence to steady-
state. In practice, it is important to keep in mind that accu-
racy is not guaranteed before convergence. To illustrate the
convergence properties of the estimator, we show in Figure 3
the evolution of the true misalignment ∥et,2∥2 and estimated
misalignment (L2/L1)∥et,1∥2 as a function of time index t,
averaged over 5000 trials. In each trial, the filter w∗ is a
Gaussian vector with norm 10

√
5, the initial filter estimate is

zero, and L1 = 10, L2 = 20, σ2
x = σ2

z = 1, and µ = 0.0044.
In the uncorrelated case, we have c = 2, and in the correlated
case, we have ρ = 0.95.

In both cases, the estimator starts out as an underestimate
of the true misalignment, since e0,1 = 0 while e0,2 is large.
The estimator is only guaranteed to be accurate once Ut

approximates U∞.
In the uncorrelated case, (13) can be rewritten as

Mt −M∞ = αt(M0 −M∞) (29)

where α = (1 − 2µσ2
x + µ2σ4

x(L + c)) ≈ 0.9917. Solving
for the time when Mτ = 2M∞, given that M0 = 500 and
M∞ = 0.067, we get convergence at τ ≈ 1000, after which
the estimate is accurate on average.

In the correlated case, the dynamics are more complex
and depend on various eigenvalues of R. In the proof of
Theorem 2, (D.17) suggests that various components of Ut

decay with parameters αi ≈ 1 − 2µλi, if µ is small. In our
case, λ1 ≈ 14.7 and λL2

≈ 0.026 yielding corresponding
convergence times ranging from τ1 ≈ 64 to τL2 ≈ 38, 000.
As a rule of thumb, to estimate the number of iterations
required before the estimator becomes reliable, one could use
the average eigenvalue λ̄ = TrR/L and assume geometric
decay with α = 1− 2λ̄.
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Fig. 3. Dynamics of true and estimated misalignment, averaged over 5000
instances

VI. CONCLUSION

In this paper, we theoretically analyze the properties of
filter error variance matrix and corresponding convergence
condition linked to learning rate for both uncorrelated and
correlated input signal in adaptive filtering system. We further
evaluated the Delay and Extrapolate method and proved that
under certain assumption, this method is useful for the esti-
mation of misalignment. The results have been verified by the
simulated experiments. This paper lays a solid foundation for
future studies on filter mean squared error and related variable
learning rate adaptive algorithms.
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APPENDIX A
PROOF OF THEOREM 1

Recall that Ut ≜ E[ete
T
t ] and define Ût ≜ ete

T
t and R̂t ≜

xtx
T
t . Then, applying (7) given i) the independence of xt and

zt, ii) {zt}∞t=1
i.i.d.∼ N (0, σ2

z) and iii) E[xtx
T
t ] = σ2

xIL, we
have

Ut+1 = E[et+1e
T
t+1]

= E[(I − µR̂t)ete
T
t (I − µR̂t)] + µ2σ2

xσ
2
zIL

= (1− 2µσ2
x)Ut + µ2σ2

zσ
2
xIL + µ2 E[R̂tÛtR̂t].

(A.1)

To simplify the third term, let Nt ≜ E[R̂tÛtR̂t]. Note that

Nt = E[xtx
T
t Ûtxtx

T
t ]

= E[xt(x
T
t Ûtxt)x

T
t ]

= E[xt(

L∑
k=1

L∑
l=1

(xt)k(Ût)k,l(xt)l)x
T
t ].| (A.2)

Therefore,

(Nt)i,j = E[(xt)i(

L∑
k=1

L∑
l=1

(xt)k(Ût)k,l(xt)l)(xt)j ].

To simplify the notation, we temporarily drop the subscript t,
and let xi, ej , wk denote the i-th, j-th, k-th entries of xt, et
and wt, respectively. Then

(Nt)ij = E[xi(

L∑
k=1

L∑
l=1

xkekelxl)xj ]. (A.3)

For i = j,

(Nt)i,i = E[x2
i

L∑
k=1

L∑
l=1

xkxlekel]

= 0 + E[x4
i e

2
i ] +

L∑
k ̸=i

E[x2
ix

2
ke

2
k] (A.4)

= cσ4
x E[e

2
i ] + σ4

x

L∑
k=1

E[e2k], (A.5)

where the last line follows because E[x4
i ] = (c + 1)σ4

x. For
i ̸= j,

(Nt)i,j = 0 + E[x2
ix

2
jeiej ] + E[x2

ix
2
jejei] (A.6)

= σ4
x E[eiej ] + σ4

x E[ejei] = 2σ4
x E[eiej ]. (A.7)

Therefore, in summary,

Nt = σ4
x(2Ut + (c− 2) diag(Ut) + Tr (Ut)IL). (A.8)

Combining (A.1) and (A.8) yields (11). Applying Lemma 1 ,
proved in Appendix D, with R = σ2

xIL, yields (12). In apply-
ing the lemma, we use ϕc(µ, σ

2
xIL) = µLσ2

x/
(
2− µcσ2

x

)
and

hence µ∗ = 2/
(
(L+ c)σ2

x

)
.

APPENDIX B
PROOF OF THEOREM 2

Since xt and et are independent, following the steps used
in analyzing (A.1), we have

Ut+1 =Ut − µRUt − µUtR

+ µ2σ2
zR+ µ2 E[R̂tete

T
t R̂

T
t ]. (B.9)

Here, as before, R̂t = xtx
T
t . Define Nt ≜ E[R̂tete

T
t R̂

T
t ].

To simplify the proof, similar to the proof of Theorem 1, we
temporarily drop the subscript t. Then,

(Nt)ij =
∑
k,l

(Ut)k,l E[xixkxlxj ]. (B.10)

Since x ∼ N (0L,R), employing Isserlis’ Theorem [21], it
follows that

E[xixkxlxj ] = RikRlj +RilRkj +RijRkl.

Using the symmetry of Ut, we have

(Nt)i,j =2(RUtR)ij +Rij

∑
k,l

(Ut)klRkl. (B.11)

Further using symmetry of Ut, we have∑
k,l

(Ut)klRkl =
∑
k

∑
l

Rkl(Ut)lk

=
∑
k

(RUt)kk = Tr(RUt)

and so

Nt = 2RUtR+Tr(RU)R (B.12)

which yields the desired expression (16). Applying Lemma 1,
proved in Appendix D, with c = 2, yields (17).

APPENDIX C
PROOF OF COROLLARY 2

The limit expression (19) follows directly from (5) and the
definition of ϕc(µ,R).

It remains to prove the bound (18). Let R = VΛV T be
the eigensystem of R, and define Bt = V TUtV . Using the
similarity invariance of the trace operator, we have

Tr(RnUt) = Tr(ΛnBt) ≤ λn−1
max Tr(ΛBt) = λn−1

max Tr(RUt).

Similarly, Tr(RnUt) ≥ λn−1
min Tr(RUt).

Multiplying (16) by R and taking the trace operator yields

Tr(RUt+1) =Tr(RUt)− 2µTr(R2Ut) + µ2
[
σ2
z Tr(R

2)

+2Tr(R3Ut) + Tr(RUt) Tr(R
2)
]

≤
(
1− 2µλmin + 2µ2λ2

max + µ2 Tr(R2)
)
Tr(RUt)

+ µ2σ2
z Tr(R

2) (C.13)

The result then follows from (5).



APPENDIX D
MATRIX SYSTEM CONVERGENCE LEMMA

Lemma 1. Let R be a positive-definite matrix of dimension L
with eigensystem R = VΛVT , and choose c ≥ 0. Let µ∗ be
the smallest positive solution to ϕc(µ

∗,R) = 1. If L+ c ≥ 2
and 0 < µ < µ∗, or if L = 1 and 0 < µ < µ∗/2, then the
matrix dynamical system defined by

Ut+1 =Ut − µRUt − µUtR

+ µ2
[
σ2
zR+ 2RUtR+Tr(RUt)R

+(c− 2)RV diag(VTUtV)VTR
]
. (D.14)

converges to

U∞ = lim
t→∞

Ut =
µσ2

z

1− ϕc(µ,R)
(2IL − µcR)

−1 (D.15)

Proof:

Applying the change of variables Bt = VTUtV and using
the orthogonality of V, (D.14) becomes

Bt+1 =Bt − µΛBt − µBtΛ

+ µ2
[
σ2
zΛ+ 2ΛBtΛ+Tr(ΛBt)Λ

+(c− 2)Λdiag(Bt)Λ]. (D.16)

Let bt ∈ RL and λ ∈ RL be vectors formed from the diagonal
elements of Bt and Λ respectively. These diagonal elements
satisfy the dynamical system

bt+1 =
(
IL − 2µΛ+ µ2cΛ2 + µ2λλT

)
bt + µ2σ2

zλ.

(D.17)

not involving the off-diagonal elements of Bt. If the matrix
Θ := 2µΛ − µ2cΛ2 − µ2λλT is non-singular, and if the
matrix IL − Θ has norm less than 1, then the system (D.17)
will converge to the limit

b∞ =
(
2µΛ− µ2cΛ2 − µ2λλT

)−1

µ2σ2
zλ. (D.18)

Both of the conditions will hold if all of the eigenvalues of Θ
lie in (0, 2).

To upper bound the eigenvalues of Θ, we can take c = 0.
By the Gershgorin circle theorem, the maximum eigenvalue
of Θ is upper bounded by

λmax(Θ) ≤max
i

(2µλi − µ2λ2
i + µ2λi

∑
j ̸=i

λj)

≤max
i

(µλi(2− µλi + µ(TrR− λi)))

≤max
i

(µλi(2 + µTrR− 2µλi))

≤1

8
(2 + µTrR)

2 (D.19)

where the last line is obtained by maximizing the previous
line over all real λi. Since µ < µ∗ ≤ 2/TrR, via (23), the
max eigenvalue of Θ is less than 2.

To show that all eigenvalues of Θ are positive, note that a

matrix of the form D − aaT with invertible D has inverse(
D − aaT

)−1
= D−1 +

D−1aaTD−1

1− aTD−1a
. (D.20)

as long as aTD−1a ̸= 1. Taking D = 2µΛ − µ2cΛ2 and
a = µλ, we see that Θ is invertible unless aTD−1a = 1. We
know D is invertible whenever µ < 2/(cλk) for all k. This
follows from the fact that µ∗ < 2/(cλk) for each k, since the
individual summands in the definition of ϕc(µ,R) increase
from 0 to ∞ as µ increases from 0 to 2/(cλk). Moreover,

aTD−1a =
∑
k

µ2λ2
k

2µλk − cµ2λ2
k

=
∑
k

µλk

2− cµλk
= ϕc(µ,R). (D.21)

so Θ is non-singular as long as ϕc(µ,R) ̸= 1. Given that
ϕc(µ,R) < 1 on 0 < µ < µ∗, the eigenvalues of Θ are non-
zero on this interval. Since all eigenvalues of Θ are positive
for sufficiently small µ > 0, continuity of eigenvalues implies
that all eigenvalues of Θ must be positive on 0 < µ < µ∗.
Thus we have shown convergence of the diagonal entries of
Bt to b∞ if 0 < µ < µ∗.

From (D.18), (D.20), and (D.21), the limit achieved for the
diagonal values of Bt is

b∞ =
1

1− aTD−1a
D−1aµσ2

z

=
µσ2

z

1− ϕc(µ,R)
(2IL − µcΛ)

−1
1. (D.22)

The last step of the proof is to show that the off-diagonal
values of Bt go to zero in the limit. In that case,

B∞ = lim
t→∞

Bt =
µσ2

z

1− ϕc(µ,R)
(2IL − µcΛ)

−1 (D.23)

so that U∞ = VB∞VT has the desired form.

From (D.16), the off-diagonal values of Bt satisfy the
dynamics

(Bt+1)nm =
(
1− µλn − µλm + 2µ2λnλm

)
(Bt)nm

Convergence to zero will be established by showing that for
0 < µ < µ∗, the factor αnm := µλn + µλm − 2µ2λnλm lies
in (0, 2) for each n,m.

To show αnm > 0, define tn,m = λn + λm. Considering
tn,m fixed and varying λn, we have

αnm = µtnm − 2µ2λn(tnm − λn)

≥ µtnm − µ2t2nm
2

≥ µtnm

(
1− µtnm

2

)
. (D.24)

Thus αnm > 0 for 0 < µ < 2/tnm. Since we have µ < µ∗ ≤
2/Tr(R) ≤ 2/tnm if follows that αnm > 0.

To show αnm < 2, it is sufficient to show µ(λn+λm) < 2.



We have

µ(λn + λm) < µ∗(λn + λm) ≤ µ∗ Tr(R) ≤ 2.

APPENDIX E
EXACTNESS OF ANALYSIS

Analysis of the LMS algorithm that we are aware of in
literature, well-represented by [18], make certain approxima-
tions that yield small differences compared with our results in
Section III. In this section, we make a note of these differences
and illustrate them numerically.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

U
n

c
o

rr
e

la
te

d
: 

M
is

a
d

ju
s
tm

e
n

t

M
numerical

M
ours

M
jaggi

(a) Uncorrelated input signals
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(b) Correlated input signals

Fig. 4. Comparison to different misadjustments over step size

In the uncorrelated case, the usual approximation is

M approx
∞ =

µσ2
xL

2− (L+ 1)µσ2
x

while while Corollary 1 gives

M∞ =

(
µσ2

xL

2− (L+ c)µσ2
x

)
.

The difference is the coefficient of variation of x2
t,i, c =

var(x2
t,i)/σ

4
x. Our result shows that the region of stability gets

smaller and the misadjustment gets larger for heavyier tailed
input distributions. Figure 4(a) plots both M∞ and M approx

∞
versus µ for the uncorrelated case, with c = 5, σ2

x = 2, and
L = 20. We also performed empirical experiments, running the
LMS algorithm for 20,000 iterations with Laplace-distributed,
i.i.d inputs, measuring the final misadjustment, and averaging
over 5,000 independent trials. The empirical results match our
analysis, and show the effect of the c parameter.

In the correlated case, we only considered Gaussian inputs.
The approximation in [18] is expressed, in our notation,

M approx
∞ =

2ϕ2(
µ
2 ,R)

1− 2ϕ2(
µ
2 ,R)

while Corollary 2 gives

M∞ =
ϕ2(µ,R)

1− ϕ2(µ,R)

These two values are plotted versus µ in Figure 4(b), where
we see that they agree for small µ but differ as µ approaches
µ∗. Experiments are again performed using 20,000 iterations
of the LMS algorithm over 5,000 trials, to obtain an empirical

curve, which closely matches our result. In these experiments
and formulas, the covariance matrix was defined by Rij =
0.95−|i−j|, with L = 20 and σ2

z = 1.


